Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2257, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396461

RESUMO

Variation in cell ploidy is a common feature of Candida albicans clinical isolates that are resistant to the antifungal drug fluconazole. Here, we report that the anillin-related protein Int1 interacts with septins for coupling cytokinesis with nuclear segregation. Loss of Int1 results in a rapid disassembly of duplicated septin rings from the bud neck at the onset of actomyosin ring contraction. Strikingly, this has no major impact on cytokinesis and septum formation. However, Int1 genetically interacts with the Sep7 septin, maintaining the diffusion barrier at the bud neck and guarantying a faithful nuclear segregation. Indeed, int1ΔΔ sep7ΔΔ mutant cells, in contrast to int1ΔΔ cdc10ΔΔ, undergo a premature activation of mitotic exit prior to the alignment of the mitotic spindle with the division axis, producing large multinucleated cells. Some of these multinucleated cells arise from trimeras similar to those observed upon fluconazole exposure. Finally, the defects in nuclear segregation could be in part due to the inability to maintain the Lte1 mitotic exit activator at the cortex of the daughter cell. These results suggest that Int1 and Sep7 play a role in maintaining genome stability by acting as a diffusion barrier for Lte1.


Assuntos
Candida albicans/genética , Candida albicans/fisiologia , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Instabilidade Genômica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ploidias , Segregação de Cromossomos , Citocinese , Mapeamento de Interação de Proteínas
2.
PLoS Genet ; 11(4): e1005152, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875512

RESUMO

Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP) present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C. albicans lineages.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Septinas/genética , Septinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
3.
Traffic ; 15(10): 1122-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040903

RESUMO

Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2-GFP dynamics did not match the pattern of other endocytic proteins. Eng2-GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3-YFP, a WASP-interacting protein, interacted with Eng2 by co-immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.


Assuntos
Endocitose , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Ligação Proteica , Transporte Proteico , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
4.
PLoS One ; 5(11): e14046, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124977

RESUMO

BACKGROUND: The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of ß-glucans. The ß(1,3)-glucan synthase complex synthesizes linear ß(1,3)-glucans, which remain unorganized until they are cross-linked to other ß(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding ß(1,3)-glucanosyl-transferases -gas1(+), gas2(+), gas4(+) and gas5(+)- are present in S. pombe, although their function has not been analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display ß(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. CONCLUSIONS/SIGNIFICANCE: We conclude that ß(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.


Assuntos
Parede Celular/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Biocatálise , Northern Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Regulação Fúngica da Expressão Gênica , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Mutação , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
5.
BMC Cell Biol ; 9: 55, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18826657

RESUMO

BACKGROUND: In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane. RESULTS: Here, we demonstrate that nutrient limitation triggers a change in the localization of at least two vegetative septins (Cdc10 and Cdc11) from the bud neck to the microtubules. The association of Cdc10 and Cdc11 with microtubules persists into meiosis, and they are found associated with the meiotic spindle until the end of meiosis II. In addition, the meiosis-specific septin Spr28 displays similar behavior, suggesting that this is a common feature of septins. Septin association to microtubules is a consequence of the nutrient limitation signal, since it is also observed when haploid cells are incubated in sporulation medium and when haploid or diploid cells are grown in medium containing non-fermentable carbon sources. Moreover, during meiosis II, when the nascent prospore membrane is formed, septins moved from the microtubules to this membrane. Proper organization of the septins on the membrane requires the sporulation-specific septins Spr3 and Spr28. CONCLUSION: Nutrient limitation in S. cerevisiae triggers the sporulation process, but it also induces the disassembly of the septin bud neck ring and relocalization of the septin subunits to the nucleus. Septins remain associated with microtubules during the meiotic divisions and later, during spore morphogenesis, they are detected associated to the nascent prospore membranes surrounding each nuclear lobe. Septin association to microtubules also occurs during growth in non-fermentable carbon sources.


Assuntos
Microtúbulos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Animais , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/análise , GTP Fosfo-Hidrolases/metabolismo , Meiose , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Microtúbulos/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/metabolismo
6.
Mol Microbiol ; 68(5): 1283-99, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18410286

RESUMO

Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the beta-1,3-glucan synthase bgs2p synthesizes linear beta-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between beta-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with beta-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4(+), a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4Delta diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4(+) is strongly induced during sporulation and a yellow fluorescent protein (YFP)-gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe.


Assuntos
Parede Celular/fisiologia , Glucana Endo-1,3-beta-D-Glucosidase/fisiologia , Schizosaccharomyces/fisiologia , Esporos Fúngicos/fisiologia , Parede Celular/enzimologia , Parede Celular/genética , Regulação Fúngica da Expressão Gênica , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Meiose/genética , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Esporos Fúngicos/química , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética
7.
Genetics ; 177(1): 281-93, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660551

RESUMO

In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Meiose/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/genética , Nucléolo Celular , Proteínas de Ligação ao GTP/genética , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...